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Abstract 

This study sheds light on the coupling of potential flood risk and drainage infrastructure 

resilience of low-lying areas of a coastal urban watershed to evaluate flood hazards and their 

possible driving forces. Copulas analyses with the aid of joint probability of simultaneous 

occurrence help characterize the complexity for hazard classification based on subsequent 

exposure to inundation under varying levels of adaptive capacity. Adaptive measures of 

consideration include traditional flood proofing structures and low impact development facilities 

for a coastal urban watershed - the Cross Bayou watershed, near Tampa Bay, Florida. Findings 

indicate that coupling flood risk and infrastructure resilience is achievable by the careful 

formulation of flood risk associated with a resilience metric, which is a function of the predicted 

hazards, vulnerability, and adaptive capacity. The results also give insights into improving 

existing methodologies for municipalities in flood management practices such as incorporating a 

multi-criteria flood impact assessment that couples risk and resilience in a common evaluation 

framework. 
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INTRODUCTION 

Background 

In May 2015, the Florida Legislature passed and the Governor signed into law SB 1094 

[https://www.flsenate.gov/Session/Bill/2015/1094] which regards the consideration of future 

flood impacts in Florida Comprehensive Plans, particularly from a coastal management 

perspective.  These new requirements, which concern development and redevelopment efforts to 

reduce the flood risk, include natural hazards such as high tide events and sea level rise. Risk in 

this context can be described as the likelihood of a flood hazard occurring with an associated loss 

or negative impact. The likelihood of associated loss or negative impact is dependent on several 

factors, such as the flood hazard considered and the level of vulnerability to flooding.  The 

concepts of hazard and vulnerability can be thought of as the physical manifestations or 

occurrences of adverse events and the propensity or predisposition to be adversely affected or 

susceptible to harm (IPCC, 2014), respectively, both of which influence flood exposure 

simultaneously.  Flood exposure is dependent upon the spread of hazardous effects given the 

vulnerability such as proximity to waterbodies and/or condition of drainage outfalls.  The level 

of risk, however, can be influenced by the level of resilience through the connection to the 

adaptive capacity in a region such as a low-lying coastal area.  The concept of resilience has 

expanded from its origins in material science and engineering to ecological resilience (Holling, 

1973) and eventually to other disciplines such as the social sciences (social resilience) and 

psychology (psychological resilience). When considering infrastructure systems, such as 

drainage under flooding, engineering resilience, which is highlighted in this study, is the ability 
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of such systems to absorb disturbance (i.e., flooding) and recover after a disturbance has 

occurred, or the ability to continue functionality under adverse conditions (Omer, 2013). While 

resilience is typically seen as an outcome, it should be viewed as a process which involves 

adaptation, anticipation, and improvement in basic functions of a considered system (Bahadur et 

al., 2010).  

Coupling flood risk and engineering resilience is by no means an easy task.  DeBruijn 

(2005) defined resilience, in terms of flood risk management, as the ability of a system to recover 

from floods.  Quantitatively, this can be represented via several indicators such as the amplitude 

or magnitude of the reaction to disturbances, the graduality of reaction(s) under increasing 

disturbances, and recovery rate (DeBruijn, 2005).  A resilient system results in a lower amplitude 

of reaction to disturbances, low graduality of reaction to increasing disturbances, and a higher 

recovery rate.  Analogously this can be tied to three types of capacity of resilience, proposed by 

Francis and Bekera (2014), which include absorptive capacity, adaptive capacity, and restorative 

capacity.  The absorptive capacity allows for adequate buffering to absorb or contain hazard 

effects while adaptive capacity is the ability to adjust or provide the necessary changes in 

response to adverse impacts such as when absorptive capacity has been exceeded. Restorative 

capacity is the ability to return to normal function or improved level of performance after a 

disturbance.  

As with many systems, however, the absorptive capacity can fluctuate with changes in 

hazards, as is the case when considering future flood risk.  With this considered, adaptive 

capacity can be seen as a “bridge” to restorative capacity and eventually resilience when 

absorptive capacity has been exceeded. Adaptive capacity can be understood as the capacity to 

cope and adapt to adverse effects or, from a systems approach, the extent to which a system can 

modify its circumstances to move to a less vulnerable condition (Luers et al., 2003). Adaptive 

capacity also encompasses the ability to plan, prepare for, facilitate, and implement adaptation 

options (Klein et al., 2003), which first depend upon the nature of the disturbances or potential 

disturbances. Subsequently, additional factors such as scale of adaptation (individual to 

systemic), policy, and constraints must also be considered. Klien et al. (2003) has argued for the 

use of adaptive capacity as an umbrella concept that includes the ability to prepare and plan for 

hazards, as well as to implement technical measures before, during, and after a hazard event. All 
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the while, the strategy for adaptive capacity must be flexible with respect to both risk and 

resilience (DeBruijn, 2005) in order to reduce rigidity in case of disruptive events (Park et al., 

2013).  

While adsorptive capacity can provide an “initial gauge” of resilience, when exceeded 

failure is imminent unless adaptive measures are taken. This is particularly concerning for 

system design based upon a particular risk event as opposed to system design adaptive to various 

levels of risk. Essentially, as Park et al. (2013) argued, the risk-based approach considers 

developing resistance to identified threats as opposed to resilience-based approaches which 

embrace uncertainty and failure due to possible threats via anticipation and adaptation. However, 

in this regard, risk and resilience cannot be applied individually but must work together. Risk 

provides a starting point for identifying potential problems or threats at hand; however, resilience 

considers how the progression can be maintained in the face of potential problems or threats.  

Review of Methods 

When considering flooding in risk analysis and resilience assessment in particular, 

flooding can be caused by any combination of hazards, the combination of which would impact 

both risk and resilience. This is particularly important for coastal communities, which typically 

are low-lying and can face heavy rainfall, high tide events, and sea level rise within the same 

time period. Subsequently, there exists a level of uncertainty of any combination of hazards 

occurring with corresponding consequence(s). Joint probability analysis is useful in this regard 

for determining the probability of potential flooding hazards occurring simultaneously rather 

than in isolation. A univariate analysis alone cannot provide a complete assessment of the 

occurrence probability of potential flooding hazards or scenarios, particularly if they are 

interdependent (Chebana and Ouarda, 2011).  However, with typical multivariate analyses, one 

condition is for the variables in question to be independent from one another (Wahl et. al, 2012).  

A univariate analysis also lacks consideration of flooding under multivariate hazards, particularly 

for coastal communities, when worst case flooding can occur under combined heavy rainfall and 

high tide events (Xu et. al, 2014).  The choice of multivariate analysis must take into 

consideration that the variables in question could be interdependent, may not be under the same 

family of marginal distributions, and are not normally distributed.   
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Both Bayesian networks and copulas have been utilized for analyzing multivariate 

problems (Cleophas,T.J. and Zwinderman, 2013; Nelson, 2006). However, Bayesian networks 

require the need for prior information or knowledge for defining conditional probability 

distributions and the structure of the network. Depending on the level of detail needed to build 

such networks, the computational demand can be quite large (Unsitalo, 2007) compared to 

copulas. For this reason, copulas can be particularly useful.  While copulas have wide 

applications across several disciplines such as finance and insurance, the applications of copulas 

within hydrology in particular is important since hydrological processes are typically 

multidimensional in nature and indicate certain levels of interdependence (De Michele et al., 

2007).  Several applications of copulas in hydrology (Table 1) consisted of analyzing the joint 

behavior of several hydrological variables during storm events while capturing important 

statistical dependences (De Michele and Salvadori 2003; Salvadori and De Michele 2004; 

Balistrocchi and Bacchi, 2011), modeling of multivariate hydrological extremes (Favre et al., 

2004; Zhang et al., 2011), rainfall frequency analysis (Zhang and Singh, 2007), flood frequency 

analysis (Wang et al., 2009) and hydraulic structural design for flooding (De Michele et al., 

2005).  Particularly for inland coastal areas, copulas have been useful in analyzing coastal 

hazards (Table 2) with underlying hydrological and hydrodynamic processes (De Michele et al., 

2007; Wahl et al., 2012; Corbella and Stretch, 2013; Xu et al., 2014; Trepanier et al.,2014).  

Table 1: Applications of Copulas for Varying Hydrology Topics 

Topic of Concerns Copula Variables References 

● Rainfall Characteristics ● Storm intensity and 

duration1 

● Rainfall volume and 

duration2 

● De Michele and Salvadori 

(2003)1 

● Salvadori and De Michele 

(2004)1 

● Balistrocchi and Bacchi, 

(2011)2 

● Extremes ● Peak flows and volumes ● Favre et al. (2004) 

● Rainfall Frequency Analysis ● Rainfall duration and 

intensity 

● Rainfall depth and intensity 

● Zhang and Singh (2007) 
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● Rainfall duration and depth 

● Flood Frequency Analysis ● Peak flow (confluence) ● Wang, Chang, and Yeh 

(2009) 

●Structural Design (Flood 

Risk) 

● Flood peak and volume ● De Michele et al. (2005) 

Note: The superscripts in the second and the third columns link the respective copula variables in 

the second with their respective references in the third column. 

 

Table 2: Applications of Copulas for Coastal Areas 

Hazard Copula Variables References 

● Sea Storm ● Significant wave height, 

storm duration, storm 

direction, and storm inter-

arrival time1 

●Wave height, wave period 

and storm duration2 

● De Michele et al. (2007)1 

● Corbella and Stretch (2013)2 

● Storm Surge ● Highest turning point, 

intensity and significant wave 

height 

● Wahl et al. (2012) 

● Extreme Rainfall 

● Storm Tide 

● Annual peak 24-hr rainfall 

and tide level 

● Xu et al. (2014) 

● Tropical Cyclones ● Storm surge height and 

wind speed 

● Trepanier et al. (2014) 

Note: The superscripts in the second and the third columns link the respective copula variables in 

the second with their respective references in the third column. 

 

As shown in the previously listed studies, copulas can be used to highlight 

interdependence and the multi-dimensional nature of flooding and climate processes, however, 

they highlight only one aspect of overall flood risk. Without considering resilience to these 

interdependent and multi-dimensional events, overall flood risk cannot be assessed. Quantifying 
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flood resilience depends on the interconnection of the urban space and the natural space.  This 

interconnection can be represented by the concept of networked systems or networked 

infrastructure systems when considering infrastructure (Omer, 2013).  With regard to flood risk 

and resilience, natural and man-made systems such as rivers, canals, stormwater drainage 

channels, and pipes are seen as the first system(s) that natural flooding hazards interact with 

before effects are felt within surrounding systems, such as residential communities, given the 

level of resilience of such systems.  As a result, the adaptive capacity of natural and man-made 

systems become important to the overall flood risk and resilience due to the “cascade effect” of 

interconnected systems (Omer, 2013; Park et al., 2013).   

A useful real-world example for consideration of both flood risk and infrastructure 

resilience is the Cross Bayou Watershed, located within Pinellas County near the Tampa Bay 

region of West-Central Florida. Low lying areas within the Cross Bayou Watershed have been 

historically prone to flooding driven by rainfall runoff and/or high tide events. Over the years, 

storm events and subsequent flooding have taken a toll on the drainage infrastructure, 

particularly for the undersized conveyance systems found throughout the watershed which are 

not equipped to handle increased runoff from surrounding urbanization. Tidal flooding has also 

impacted low-lying areas near a tidal canal which dissects the watershed connecting neighboring 

bays for which inadequate protection exists.  Water within the canal can flow in either direction 

depending upon tidal conditions. Flooding occurs periodically in several low-lying communities 

with strong interactions between the surface water and the groundwater systems.  In dealing with 

such a complex system, the Interconnected Pond and Channel Routing (ICPR) catchment model 

(Streamline Technologies Inc., 2015) was applied to the study region for coupling risk and 

resilience in support of multi-criteria flood impact assessment.  The objectives of this study are 

to: (1) determine the dependence structure of potential flooding risk in a low-lying area within 

the Cross Bayou Watershed via a copulas analysis, (2) link flood risk and engineering resilience 

via implementing a risk formulation which includes a resilience metric that is dependent upon 

the hazard, vulnerability, and exposure of an area of concern, and 3) conduct a multi-criteria 

flood impact assessment for decision analysis.  Such efforts may answer the following scientific 

questions: 1) can the copulas analysis fully support the risk analysis? 2) how can potential flood 

risk be offset by modeling adaptive measures for increasing drainage infrastructure resilience 



8 

 

with the aid of ICPR? and 3) can the well coupled flood risk and engineering resilience lead to 

better decision making via a multi-criteria flood impact assessment? Results of this study will 

have implications for policy makers such as those in Pinellas County who are seeking new ways 

of reducing the flood insurance rates of their constituents by considering new flood management 

strategies. This paper serves as a companion study of Joyce et al. (2017). 

STUDY AREA   

The Cross Bayou Watershed of Pinellas County (Figure 1), Florida, was selected as a case study 

because of its vulnerability to coastal flooding and Pinellas County’s efforts to implement 

improved stormwater management to increase the area’s adaptive capacity to future hazards. The 

Cross Bayou watershed encompasses approximately 31 km� (7,697 acres), primarily comprised 

of high-density residential, industrial, and commercial areas. An important feature of the 

watershed is a 16.9 km (10.5-mile) long constructed tidal canal, the Cross Bayou Canal (Figure 

1), which dissects the watershed and connects Tampa Bay and Boca Ciega Bay on its 

northeastern and southwestern ends, respectively. The Cross Bayou Canal also intersects the 

Pinebrook Canal to the southwest (Figure 1). Water within the canal can flow in either direction, 

depending on tidal conditions. This feature, while useful for overall watershed drainage, is 

potentially hazardous to low-lying communities during high tide events, particularly when 

considering the ongoing threat of sea level rise (NOAA, 2016) near the Tampa Bay region.  



9 

 

 

Fig.1: Extent of Cross Bayou Watershed  

Some areas in the watershed are consistently more vulnerable and have a decreased 

adaptive capacity to flooding. The Mariners Cove residential community (Figure 2), in 

particular, is known for significant flooding from storm events. Flooding in the Mariners Cove 

community is primarily caused by heavy rains and high tide events of the adjacent Cross Bayou 

canal. 
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Fig.2: Extent of example low-lying community (the Mariners Cove area) in Cross Bayou 

Watershed vulnerable to coastal flood hazards. Source of Satellite Imagery: Esri, 

DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, 

IGN and GIS User Community 

METHODOLOGY 
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There are many relevant definitions of risk and resilience in the literature. The methods outlined 

in this section focus on the essence of rational choice and the actualization for coupling of risk 

and resilience. 

Risk Formulation 

Risk, in a generalized formulation, can be represented as follows: 

Risk = f(likelihood or probability of consequences occurring and consequences)    (1) 

Risk as a function of likelihood of consequences is related to decision theory such that risk can 

be represented as an expected value as follows: 

Risk (Expected Value) = likelihood or probability of consequences occurring  consequences×  (2) 

Likelihood or probability of consequences occurring = f(Hazard, Vulnerability, Resilience)  (3) 

Consequences = f(Exposure) = f(Hazard, Vulnerability)      

 (4) 

The likelihood or probability of consequences occurring is a function of hazard, vulnerability, 

and resilience.  The consequences are a function of exposure, which is also a function of hazard 

and vulnerability.  Literature can provide some guidance with regard to how the elements of 

hazard, vulnerability, resilience and exposure are related mathematically. Table 3 details the 

essence of this issue in an attempt to provide a mathematical formulation of risk. . 

Table 3. Variations in the risk formulation in literature 

Risk Formulation Source 

Risk = Hazard  Vulnerability×
 

 

 

� Ciurean, Schroter and 

Glade (2013) 

� UN International 

Strategy for Disaster 

Reduction (UNIDSR, 
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2002) 

Hazard  Vulnerability 

Adaptive Capacity

×
 

� Food and Agriculture 

Organization (2003) 

� World Health 

Organization(2007) 

Risk = Hazard  (Exposure  Sensitivity  Resilience)× × ×
 

� Johansen (2010) 

 

In the aforementioned risk formulations, sensitivity is the degradation in performance 

during continuous effects from hazards from a physical system perspective (Johansen, 2010). 

Aside from the generalized formulations presented in Table 3, mathematically, the formulations 

have advantages and disadvantages and will be presented on a case by case basis below:  

Case I: Risk = Hazard  Vulnerability×         (5) 

For this case, the risk formulation is general and not specific in scope such that the application of 

this risk formulation assumes that hazard and vulnerability are only considered without other 

elements such as exposure or resilience unless defined further by the user of such formulation.  

Case II: Risk = Hazard  (Exposure  Sensitivity  Resilience)× × ×      (6) 

For this case, the risk formulation is expounded upon by breaking down the vulnerability term as 

a product of exposure, sensitivity, and resilience. This formulation is less simplistic than in Case 

I. However, this formulation can only be applied carefully, depending on how the resilience term 

is defined. 

Case III: 
H azard  Vulnerability 

R isk =  
Adaptive Capacity

×        (7)

 



13 

 

Case III applies a quotient. Adaptive capacity is also one aspect of resilience as defined in 

literature such as Francis and Bekera (2014). However, the quotient term presents challenges 

given how adaptive capacity is defined or formulated such that adaptive capacity could be large 

or small. In the case of very small numbers for adaptive capacity, the risk can be considerably 

large. Conceptually this makes sense, however, quantitatively this presents challenges for 

interpretation. The success of this formulation depends on how the quotient term, adaptive 

capacity or resilience, is defined.   

Resilience Formulation 

The resilience term, throughout the literature, does not have a consistent form and varies given 

the system and assumed response. For infrastructure or engineering systems, Yodo and Wang 

(2016) have outlined how resilience metrics are developed based on three categories or 

approaches, as summarized in Table 4. 
 

Table 4. Framework for Defining Engineering/Infrastructure Resilience Metrics as 

Adapted from Yodo and Wang (2016) 

Category/Approach 
Based on theoretical 

resilience curves 

Based on pre- and post-

disruptions 

performances 

Based on reliability 

and restoration 

Description 

Quantitative resilience 

metric developed from 

the properties of 

theoretical resilience 

curves 

Quantitative resilience 

metrics developed from 

system performance 

before (pre-) and after 

(post-) disruption 

Quantifies resilience 

from a system’s ability 

to maintain its 

capacity and 

performance during a 

given period of time 

and to restore its 

capacity and 

performance 
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With respect to the first category/approach from Table 4, defining a quantitative 

resilience metric based on theoretical resilience curves may present problems since resilience 

curves could be non-linear in form and may not follow a defined pattern given variation in 

hazard or disruption. Defining a quantitative resilience metric based on (1) pre- and post-

disruptions performances and (2) reliability and restoration may be more useful for this study. 

Francis and Bekera (2014) proposed a resilience metric that can account for both pre- and post-

disruptions along with reliability and restoration in the following formulation:  

Resilience = S dr
p

o o

FF

F F

   
× ×   
   

       (8) 

where  

*
[ ( )] *

*

*
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S speed recovery factor = 

 otherwise

r ra t t

r r
r

p
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t
e t t

t

t

t

δ

δ

− −   ≥  
  =  

  
    

 

 system recovery state 

 original system state

 system state following disruption 

adaptive capacity 

absorptive capacity

 slack time or the max time during post-disruptio

r

o

d

r

o

d

o

F

F

F

F

F

F

F

tδ

=
=
=

 
= 

 

 
= 

 

=

*

n that is accepted before recovery begins

 time to final recovery (i.e. new equilibrium state)

time to complete initial recovery actions 

a = decay in resilience parameter representing time to new

r

r

t

t

=

=
 equilibrium state

 

From the aforementioned resilience metric, the decay factor, a, is represented such that if 

the initial recovery takes longer than the slack time the resilience metric decreases. However, this 

metric, as proposed by Francis and Bekera (2014) presented a challenge regarding what value to 

assign the decay parameter. In addition, the slack time variable is subjective depending on the 

system of concern and decision maker. Lastly, when considering flooding, the variable 
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representing the original system state, oF  would be assumed zero since the system (i.e., drainage) 

is at a dormant or no activity state, resulting in the ratio becoming undefined.  

In this specific case, a potentially useful metric should be modified by considering the 

difference between the initial recovery time (i.e., initial reduction in inundation depth after 

maximum inundation area) and the final recovery time (i.e., no inundation or no exposure):  

T
Relative Change in Time of Exposure = 

f i

i

T

T

−
 ( 9 ) 

T initial recovery time (time in which inundation depths are initially reduced 

from maximum inundation depths, i.e. max exposure)

T  final recovery time (time in which inundation depths are non-exist

i

f

=

= ent 

following maximum inundation depths, i.e. max exposure)

 

A resilience metric can be created that is the reciprocal of the relative change in time of exposure 

and is represented as follows: 

1
Resilience = 

Tf i

i

T

T

− 
 
 

 ( 10 ) 

Visually, the resilience term can be represented by Figure 3. The goal of the resilience metric is 

to minimize the difference in the numerator ( Tf iT− ) such that the system in question can achieve 

recovery in a shorter period of time (i.e. Tf iT−  is small in value). Achieving shorter recovery 

times highlights greater resilience such that, when considering concepts proposed by Francis and 

Bekera (2014), absorptive capacity, adaptive capacity and restorative capacity of the system are 

greater. The goal subsequently would be to implement a system that achieves greater absorptive 

capacity, adaptive capacity, and restorative capacity.  
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Fig. 3: Schematic of determining the resilience metric 

 

The Proposed Risk Formulation & Framework 

Given the proposed resilience metric, the Case III risk formulation is more appropriate to utilize 

in this study and can be represented in the following generalized formulation:  

 
Hazard  Vulnerability x Exposure

Risk = 
Resilience

×
 (11) 

1. Risk = Expected value of negative impact given the product of hazard, vulnerability, 

exposure, and resilience components. Increases in hazard, vulnerability and exposure 

could increase risk; however, by minimizing the overall recovery time, represented by 

the resilience metric, risk can be reduced.  
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Hazard Weight x Vulnerability Weight  x Exposure Weight

Risk = 
Resilience

ConsequencesLikelihood

 
 
 
  

∏ ∏ 1444244431444444442444444443

 ( 12 ) 

 

2.Hazard= Product of joint probabilities of combinations of variables that could contribute to 

flood hazard via normalized Archimedean copula PDF plots (see Appendix B). 

3. Vulnerability = Product of applied weights, normalized between 0 and 1 with 1 being the 

highest, to a given area of concern based upon several factors such as elevation, distance to 

waterbodies, and drainage capacity. 

4. Exposure = Inundation depth value for an area of concern, normalized from 0 to 1. 

5. Resilience 

 
1

Resilience = 
Tf i

i

T

T

− 
 
 

 

T initial recovery time (time in which inundation depths are initially reduced 

from maximum inundation depths, i.e. max exposure)

T  final recovery time (time in which inundation depths are non-exist

i

f

=

= ent 

following maximum inundation depths, i.e. max exposure)

 
Minimizing the difference between the initial recovery time iT

 and the final recovery time [i.e., 

the numerator (Tf iT− )] results in reduction of risk due to faster recovery.  
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Fig.4: Methodology framework 

 

Hazard Variables 

Copulas have emerged, particularly in hydrology, as a useful approach for analyzing 

multivariate processes or events such as floods.  For low-lying coastal areas in particular, such as 

the Cross Bayou Watershed, flooding can occur in two cases: (1) with respect to storm tide 

and/or rainfall from a tropical storm event or (2) high tide and/or rainfall from a non-tropical 

storm event. Flooding does not occur in isolation and is dependent on several variables within 

nature.  In this study, the potential interdependence of daily stage levels in the Cross Bayou 

Canal, daily rainfall, daily average wind speed, daily barometric pressure and moon phasing 

(fraction of moon illumination) (Figure 5) from observed stations (Figure 6) are sought to 

characterize flood hazard potential.  

Tidal stage within the canal could be potentially affected by factors such as the following: 

(1) rainfall runoff which drains into the canal from upstream areas, (2) high winds from tropical 

storms which can contribute to storm surges, (3) barometric pressure which could increase tidal 

stage with decreasing pressure, and (4) moon phasing such that tides can rise higher and fall 

lower during new and full moons (fraction of moon illumination values of 0 and 1 respectively) 

while rising and falling moderately during first and third-quarter moon phases (values near 0.25 

and 0.75, respectively).  As evident in Figure 5, weak to no correlation is present between the 

following: (c) tidal stage and wind direction, (d) tidal stage and barometric pressure and (e) tidal 

stage and fraction of moon illumination.  These combinations will not be evaluated by the 
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proposed copula analyses in this study. Since wave height is not continuous for the same period 

of record as rainfall and wind speed, wave height will be the limiting factor for the period of 

analysis. The year 2012, however, is a worthwhile period for copula analysis with associated 

daily rainfall and daily tidal stage at their maximums during the year 2012 compared to the entire 

period of record 2002-2014. Wave height data is also available for the year 2012.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

 

(e) 
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(f) 

Fig.5: Relationship between (a) tidal stage and rainfall (b) tidal stage and fastest 2-minute 

wind speed, (c) tidal stage and wind direction for fastest 2-minute wind speed, (d) tidal 

stage and barometric pressure and (e) tidal stage and moon phasing for a continuous 

period of record (7/30/2002-12/31/2014). For the year 2012, relationship between (f) wave 

height and tidal stage.  
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Fig. 6: Locations of tidal stage, rainfall, wind speed and barometric pressure data for 

copula analysis. Note: Wave Height Data was obtained from an offshore buoy (27°20'29" N 

84°16'20" W) managed by the NOAA National Data Buoy Center. A fraction of Moon 

Illumination data was obtained from the Astronomical Applications Department of the 

U.S. Naval Observatory. Note: NOAA is the National Oceanic Atmospheric 

Administration, NWS is the National Weather Service and USGS is the United States 

Geological Survey. Source of Satellite Imagery: Esri, DigitalGlobe, GeoEye, Earthstar 

Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN and GIS User Community  

 

Copula Functions 
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The copula has its origins in Sklar’s theorem (Nelsen, 2006), which states that given a 

joint distribution function, H, with marginal distributions 1F   and 2F , there exists a copula 

function C for all real values of x and y: 

     1 2( , ) ( ( ), ( ))H x y C F x F y=     (13) 

Sklar’s theorem can also be applied to n-dimensions such that with a distribution function H, of 

n-dimensions, with marginal distributions 1 2, ,..., nF F F there exists a copula C of n-dimensions for 

all real values of x: 

       1 1 1 2( , ,..., ) ( ( ), ( ),..., ( ))n nH x x x C F x F x F x=    (14)  

The choice in copula is important based upon its ability to capture the dependency 

structure of the variables considered. Archimedean copulas are used in a wide range of 

applications because they are easily constructed (Nelson, 2006) and are capable of capturing 

wide ranges of dependence. Archimedean copulas include the one-parameter families (Gumbel, 

1960; Clayton 1978; Ali, Mikhail and Haq, 1978; Frank, 1979; Joe, 1993) and the bivariate two-

parameter BB1-BB3 and BB6-BB9 families (Joe, 1997). An Archimedean copula of d-

dimension(s) can be  

represented in the following form:  

     1 1

1 1( , .. ., ) [ ( ) . .. ( ) ]d dC x x x xψ ψ ψ− −= + +     (15)                                                                                                                        

where ψ  is a continuous generator function that satisfies the following conditions: (1) ψ (1) = 

0;  

(2) ψ (0) = ∞; (3)ψ ’ (t) < 0 and (4) ψ ’’ (t) > 0 for all values of t ∈ (0, 1]. Widely used 

Archimedean copulas include the Gumbel-Hougaard, Clayton, and Frank copulas. Given d-

dimension(s), the Gumbel- Hougaard copula, Clayton copula, and Frank copula are represented 

in Table 5.  

Table 5. Archimedean Copulas utilized in this study 

Copula 
1( ,..., )dC x xθ  ψ (t) θ  

Gumbel- 

Hougaard 
{ }1/

1
exp [( ln ( )) ... ( ln ( )) ]

d
F x F xθ θ θ− − + + −  ( ln )t θ−  1θ ≥  

Clayton 1 /

1( ( ) . .. ( ) 1)
d

F x F xθ θ θ− − −+ + −  1t
θ

θ

− −
 0θ ≥  
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Frank 
1 2 ( )( ) ( )

1 ( 1)( 1)...( 1)
ln 1

1

dF xF x F x
e e e

e

θθ θ

θθ

−− − − − −− + − 
 1

1

t
e

e

θ

θ

−

−

−
−

 0θ ≠  

 

where θ is a dependence parameter. The Frank copula allows for both positive and negative 

dependence while the Gumbel-Hougaard copula allows for more positive dependence and the 

Clayton copula allows for more negative dependence. However, before the choice in copula can 

be made for determination of joint hazard probability, a separate methodology (Figure 7) 

consisting of optimization techniques must be developed. As such, before the identification of 

the best-fit copula can be made, appropriate parameters must be estimated with a corresponding 

likelihood value. The best-fitting of the copula is best determined by parameter and likelihood 

estimation. The “Maximum Likelihood Estimation” method can be utilized as a first step toward 

determining the best-fit Archimedean copula due to its inherent versatility for varying models 

and data types (Khadka, 2008). The following steps (Figure 7) are used to outline the 

determination of maximum log-likelihood using Archimedean copula parameters.   

 

 

Fig. 7: Methodology for determination of best-fit Archimedean copula 

1. Given a d-dimensional copula of the form 1 1

1 1 1( , .. . , ) ( ( ) ... ( ))
d n d

C x x F F x F x− −= ∂ , the 

corresponding copula density function can be expressed as:  

2 1 1

1 1 1
1

1 1

( ,..., ) ( ( )... ( ))
( ,..., )

... ...

d n d
d

d d

C x x F F x F x
c x x

x x x x

− −∂ ∂= =
∂ ∂ ∂ ∂

  (16) 

Table 6. PDFs of Archimedean copulas utilized in this study 

Copula 
1( ,..., )dc x xθ  

Gumbel- 

Hougaard 
{ }

11
1/ 1 1

1 1 11
2

1

[( ln ( ))...( ln ( ))]
exp [( ln ( )) ... ( ln ( )) ] ( ( )... ( )) [( ln ( )) ... ( ln ( )) ] 1

[( ln ( )) ... ( ln ( )) ]

d

d d d

d

F x F x
F x F x F x F x F x F x

F x F x

θ
θ θ θ θ θ θ

θ θ θ

θ
−

−

−

 
 − −  − − + + − − + + − + −  
   − + + − 
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Clayton 
1

2
1

1 1( ( )... ( )) ( 1)( ( ) ... ( ) 1)
d d

F x F x F x F x
θ θ θ θθ

− −− − − −+ + + −  

Frank 
( ( ) ... ( ))1

( ( ) ... ( )) ( )( ) 21 1

( 1)

( ... )

F x F xd

F x F x F xF xd d

e e

e e e e

θ θ

θ θθ θ
θ − + + −

− + + −− −
−

− −
 

 

2. Assuming parameters for the copula C and marginal CDFs 
( ,... )

i d
F F

 as θ  and

1 1[ , ..., ] [( , ..., ), ...( , ..., )]k y k yθ θ α α α α
∧

= =θ
∧ ∧

, respectively, with 1,...,k d= where d  represents the 

number of dimensions and 
y

 is the number of parameters for a respective marginal distribution 

can be represented by the following density function:  

 

1 1 1 1

1

( , ..., ; , ) ( ( ; ), ..., ( ; ); ) ( ; )
d

d d d d k k

k

f x x c F x F x f xθ θ θ θ
∧ ∧ ∧

=

= ∏
∧

θ θ
  (17) 

3. Defining a likelihood function L: 1

( ; ) ( ; )
n

i i

i

L x f xθ θ
=

= ∏
 such that the likelihood of some 

parameter(s) are a certain value, given the data ,...,i nx x  of n-observations, is similar to the 

probability of observing the data given some parameter(s). Given the log-likelihood is  

1

ln ( ; ) ln ( ; )
n

i i

i

L x f xθ θ
=

=∑
 the log-likelihood of Eqn. (17), this can be represented as:  

1

1

1 1

1 1 1

ln ( , ; ,..., ) ln ( ,..., ; , )

( ( ; ),..., ( ; ); ) ln ( ; )

n

n ik nd

i

n n d

i k d id d k ik

i i k

L x x f x x

c F x F x f x

θ θ

θ θ θ

∧ ∧

=

∧

= = =

= =

+

∑

∑ ∑∑

θ θ

θ
    (18) 

for k = 1,…,d where d = number of dimensions.  

4. The negative-log likelihood can be determined by determining the negative of Eqn. (18) as 

represented: 

1

1

1 1

1 1 1

ln ( , ; ,..., ) ln ( ,..., ; , )

( ( ; ),..., ( ; ); ) ln ( ; )

n

n ik nd

i

n n d

i d id d k ik

i i k

L x x f x x

c F x F x f x

θ θ

θ θ

∧ ∧

=

∧ ∧

= = =

− = − =

 − + 
 

∑

∑ ∑∑

θ θ

θ θ
   (19) 

with the goal of minimizing the negative log-likelihood which is equivalent to maximizing the 

log-likelihood. The negative log-likelihood is found using copula-based MATLAB algorithms 

adapted for Patton (2004) but with changes to account for optimization functions to maximize 

the log-likelihood.  
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Once the maximum log-likelihood of each copula, with an associated dependence 

parameter, is determined (see Appendix B), additional criteria is needed to determine the best-fit 

copula for the data. The Akaike Information Criterion (AIC) (Akaike, 1974), is typically applied 

in the selection of semiparametric and parametric copula models, however the Copula 

Information Criterion has been recently developed to provide criteria for copulas specifically 

with the drawback of increased computational cost (Jordanger and Tjostheim, 2014). As such, 

the AIC will be a recommended criterion for this study and is determined as follows: 

                                  
2 2ln( )AIC K LL= −

     (19) 

where K is the number of parameters estimated and LL is the log-likelihood. Given a set of 

candidate models for the data, the preferred model is the one with the minimum AIC value for 

the given maximum likelihood. The AIC value reflects the goodness of fit but it also includes a 

penalty with each increase in the number of estimated parameters to discourage overfitting.  

Vulnerability 

The Mariners Cove community was selected as a test site for classifying vulnerability. 

The vulnerability component of the risk formulation can be quantitatively defined using an 

applied weighting system based upon the sum of several criteria (Table 7). The criteria are as 

follows: (1) the distance to a major water body, (2) slope, (3) elevation from a digital elevation 

map (DEM), (4) soil condition and (5) percent imperviousness (Figure 8). Each criteria is 

assigned a weight from zero (least vulnerable) to one (most vulnerable). Application of weights 

to each criterion was conducted using the “Fuzzy Membership” tool of ArcGIS Spatial Analyst. 

Figure 9 showcases the applied weighting within the watershed for each criterion along with the 

sum of normalized criteria. 

Table 7. Vulnerability Criteria 

Criteria Description  Data Source Weight 

Distance to Water body 

Distance of area relative 

to a major water body 

such as a river. Higher 

weight assigned to small 

Pinellas County 0 -1 
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distances 

Slope 
Higher weight assigned 

to relatively flat areas 

From DEM 

(Pinellas County) 
0 -1 

Elevation 
Higher weight assigned 

to smaller elevations 

DEM (Pinellas 

County) 
0 -1 

Soil Condition 

Higher weight applied to 

poorly drained soil (soil 

with higher runoff 

potential when wet). 

USDA/NRCS 

Web Soil Survey 
0-1 

Imperviousness (%) 

Runoff potential based 

upon level of 

imperviousness. Higher 

weight assigned to areas 

with low % 

imperviousness. 

National Land 

Cover Database 

2011 

0-1 

 

 

(a)        (b)         (c)          (d)           (e)  
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Fig. 8: Non-weighted Vulnerability criterion (a) Distance, (b) Slope weight, (c) DEM, (d) 

Soil, and (e) Imperviousness for each vulnerability criteria for the Mariners Cove 

community. Source of Satellite Imagery: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN and GIS User Community. 

 

 

             (a)        (b)              (c)         (d)         (e) 

 

Fig. 9: Associated weights (a) Distance, (b) Slope weight, (c) DEM, (d) Soil, and (e) 

Imperviousness for each vulnerability criteria for the Mariners Cove community. Source of 

Satellite Imagery: Esri, DigitalGlobe,GeoEye, Earthstar Geographics, CNES/Airbus DS, 

USDA,USGS,AeroGRID,IGN and GIS User Community. 

 

Exposure  

The exposure component of the risk formulation is an applied weight which is representative of 

the level of inundation due to the hazards considered. Tropical Storm Debby in late June 2012 

was chosen as a test case for determining exposure due to its associated heavy rainfall, high 

tides, and waves. The level of inundation is determined via a watershed model, the 

Interconnected Channel and Pond Routing Version 4 software (ICPRv.4). The ICPRv.4 model 
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(Streamline Technologies Inc., 2015) is a comprehensive hydrodynamic stormwater and 

hydrologic model that integrates terrain data, hydrologic data, hydraulic data, and climate data 

via a layering and data management system. ICPRv.4 was utilized to construct a detailed model 

of the Cross Bayou watershed, which includes an integrated surface and groundwater interface. 

The ICPRv.4 software can also determine potential flood inundation via 2D overland flow 

algorithms. For more detail on ICPR software, please see Joyce et al. (2017). 

 

Adaptive Measures 

Four measures (Table 8) will be considered for defining adaptive capacity. Each measure will 

fall within three categories: blue, grey, and green, with their respective locations (Figure 10). 

From the three measures considered, each will be grouped under varying adaptive scenarios 

(Table 9).  

 

Table 8: Adaptive Measures 

Measure Description  Category of Drainage 

Infrastructure 

Canal Dredging(Section 1) Removal of sediments and 

material from the Cross Bayou 

Canal to restore capacity of 

canal such as depth. Increase 

depth by 0.61m (2 ft.).  

Blue 

Canal Dredging(Section 2) Removal of sediments and 

material from the Cross Bayou 

Canal to restore capacity of 

canal such as depth. Increase 

depth by 0.61m (2 ft.).  

Blue 

Tidal Wall (with stormwater 

inlets) 

Protection against high tide 

events. Minimum height of 

wall = 3.04 m (10 ft.). Divert 

rainfall runoff using 

stormwater inlets with 

Grey  
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underground pipes back to 

canal downstream. 

Low Impact Development 

(LID) 

Incorporation of natural 

drainage pathways to reduce 

runoff by reducing 

imperviousness by 25% 

Green 

 

 

 

Fig. 10: Locations of adaptive measures 

 

Table 9: Adaptive Measures and Scenarios 

Scenario Adaptive Measure(s) Type and Location of 

Adaptive Measure(s) 

1 No Action None 

2 LID Only 

Site A (Pervious Pavement) 

Site B (Swales) 

Site C (Pervious Pavement) 

Site D (Pervious Pavement)  

(Figure 9) 

3 Dredging Only Sites 1 and 2 (Figure 9) 

4 Tidal wall Only Tidal Wall with stormwater 
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inlets (Figure 9) 

5 LID & Dredging 

Site A (Pervious Pavement) 

Site B (Swales) 

Site C (Pervious Pavement) 

Site D (Pervious Pavement) 

(Figure 9) 

Sites 1 and 2 (Figure 9) 

6 LID & Tidal wall 

Site A (Pervious Pavement) 

Site B (Swales) 

Site C (Pervious Pavement) 

Site D (Pervious Pavement) 

Tidal Wall with stormwater 

inlets 

(Figure 9) 

7 Dredging & Tidal wall 

Tidal Wall with stormwater 

inlets 

Sites 1 and 2 

(Figure 9) 

8 LID, Dredging & Tidal wall 

Site A (Pervious Pavement) 

Site B (Swales) 

Site C (Pervious Pavement) 

Site D (Pervious Pavement)  

(Figure 9) 

Sites 1 and 2 (Figure 9) 

Tidal Wall with stormwater 

inlets 

 

RESULTS & DISCUSSION 

Exposure 

Exposure of the Mariners Cove community is presented in Figures 11 and 12 as a relation 

to inundation depth. Considering the scenarios presented in Table 9, the inundation depth is 
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higher with no adaptive measure as expected; however, incorporation of LID and dredging 

measures, without combined tidal wall and stormwater inlets, only offered minor reductions in 

inundation depths. This can be attributed to each adaptive measure offering a different level of 

resilience against disturbances such as flooding.  Amongst the combination of adaptive 

measures, the incorporation of dredging and the tidal wall with stormwater inlets provides the 

greatest contribution to reducing the exposure magnitude or inundation depth (Figure 12c-d). 

When considering spatial exposure changes, there are minor changes in exposure when 

incorporating adaptive measures without the tidal wall and stormwater inlets.  With the 

incorporation of the tidal wall and stormwater inlets, changes in spatial exposure are more 

pronounced with an unexpected result such that areas near the tidal wall and stormwater inlets 

are slightly more exposed spatially; however, exposure magnitudes are still considerably lower 

compared to scenarios when no adaptive action was considered. Exposure only explains one 

aspect of risk that can be explained further when considering resilience, since the incorporation 

of resilience can essentially determine how long the exposure is felt within the area of concern. 

For instance, for what time period will the area of concern be exposed or inundated and in what 

time period will the flood water begin to recede? Answers to these questions can be provided by 

the results of the resilience metric.   

 

 

   (a)                        (b)            (c)                (d) 
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(e)                (f)            (g)          (h) 

Fig. 11: Non-normalized exposure (flood depth) for (a) no adaptive action, (b) LID Only, 

(c) Dredging Only and (d) Wall Only as well as normalized exposure for (e) no adaptive 

action, (f) LID Only, (g) Dredging Only and (h) Wall Only during Tropical Storm Debby 

on June 24th, 2012 Hour 18 (during max exposure).  

 

 

(a)          (b)             (c)           (d) 



34 

 

 

      (e)          (f)             (g)           (h) 

Fig.12: Non-normalized exposure (flood depth) for (a) LID & Dredging, (b) LID & Wall, 

(c) Dredging & Wall and (d) LID, Dredging & Wall as well as normalized exposure for (e) 

LID & Dredging, (f) LID & Wall, (g) Dredging & Wall and (h) LID, Dredging & Wall 

during Tropical Storm Debby on June 24th, 2012 Hour 18(during max exposure). 

Resilience  

The goal of the resilience metric is to minimize the difference between the initial 

recovery time iT
 and the final recovery time [i.e., the numerator (Tf iT− ) such that the system in 

question can achieve recovery in a shorter period of time such that Tf iT−  is small in value]. As 

evident in Table 10, the combination of dredging and the tidal wall resulted in minimizing the 

difference between the initial recovery time iT
 and the final recovery time [i.e., the numerator (

Tf iT− )] such that this combination resulted in faster overall recovery or greater resilience to 

flood waters. 
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Table 10: Recovery Time and Resilience Term 

 ICPRv.4 Simulation Results   

Scenario 

Initial 

Recovery 

Period Post-

Max Flooding 

iT
 (hours) 

Final (Full) 

Recovery 

Period Post-

Max Flooding 

fT
  (hours) 

Relative 

Change in 

Time of 

Exposure 

Tf i

i

T

T

−

 

 

Resilience 

 

1

T
f i

i

T

T

− 
 
 

 

No Action 14 120 7.57 0.132 

LID Only 14 120 7.57 0.132 

Dredging 

Only 
13 99 6.61 0.151 

Wall Only 13 28 1.15 0.870 

LID & 

Dredging  
13 99 6.61 0.151 

LID & Wall 13 28 1.15 0.870 

Dredging & 

Wall 
12 25 1.08 0.926 

LID, 

Dredging & 

Wall 

12 25 1.08 0.926 

 

Risk  

Given the eight scenarios considered, the hazard and vulnerability components were the 

same. The primary components that influenced changes in risk were exposure and resilience, 

which are tied to the adaptive measures implemented. According to Eq. 12, the expected value of 

risk change decreases considerably for adaptive measures incorporating the tidal wall (Figure 

13). Reduction in risk magnitudes overall (Figure 13a-h) with the incorporation of adaptive 
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measures such as LID, dredging and the tidal wall, can be attributed to an increase in flood 

resilience. Irrespective of changes to exposure magnitudes, resilience remains the greatest 

influence to risk such that increases in flood resilience (i.e., decreases in the time for water to 

recede from the area) via incorporation of adaptive measures presented in Table 10, help to offset 

risk magnitudes as evident in Figure 13.  

Spatially, risk does not change much across adaptive measures, with the exception of the 

southwestern corner of the Mariners Cove area and the eastern boundary of the Mariners Cove 

area (Figure 14). The changes in risk, spatially, near the southwestern corner and eastern 

boundary of Mariners Cove are attributable to incorporation of the tidal wall and stormwater 

inlets. In general, the closer to the southern Mariners Cove boundary, the higher the risk. Overall, 

each adaptive measure offers a different level of resilience against flood disturbances and 

subsequently offers differing changes in risk, more so by magnitude than spatially.  

  

 

(a)                (b)   (c)          (d) 
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(e)                (f)   (g)          (h) 

Fig. 13: Non-normalized spatial risk values for (a) no adaptive action, (b) LID Only, (c) 

Dredging Only and (d) Wall Only during Tropical Storm Debby on June 24th, 2012 Hour 

18  (during max exposure). Non-normalized spatial risk values for (e) LID & Dredging, (f) 

LID & Wall, (g) Dredging Only and (h) Wall Only during Tropical Storm Debby on June 

24th, 2012 Hour 18 (during max exposure). 

 

 

 

(a)                (b)   (c)          (d) 



38 

 

 

(e)                (f)   (g)          (h) 

Fig. 14: Normalized spatial risk for (a) no adaptive action, (b) LID Only, (c) Dredging Only 

and (d) Wall Only during Tropical Storm Debby on June 24th, 2012 Hour 18 (during max 

exposure). Normalized spatial risk for (e) LID & Dredging, (f) LID & Wall, (g) Dredging 

and Wall and (h) LID, Dredging and Wall during Tropical Storm Debby on June 24th, 2012 

Hour 18 (during max exposure). 

When conducting risk analysis for future hazards, there are sources of uncertainty which 

could be aleatory or epistemic in nature (Der Kiureghian and Ditlevsen, 2009) such that 

uncertainty arises from the process itself or intrinsic uncertainty (aleatory) and uncertainty from 

lack of knowledge or data in modelling the process (epistemic). 

 

Decision Analysis 

Decision makers often rely on criteria and weighing possible outcomes before choosing 

the most beneficial plan of action. This particularly concerns municipalities evaluating potential 

measures for improving infrastructure for their constituents to rely on. This is particularly 

evident in areas that are prone to flooding and often rely on adequate drainage infrastructure to 

minimize damage to property. This is important from the vantage point of national policies 

related to flood risk and insurance. The National Flood Insurance Program (NFIP) aims to reduce 

the impact of flooding on private and public property by providing affordable insurance to 

property owners. The Community Rating System (CRS) of the NFIP is a voluntary program that 

encourages communities to adopt and enforce flood management practices which exceed NFIP 
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requirements as an incentive for reducing flood insurance premiums.  Recommended flood 

management practices under CRS include flood protection measures such as structural projects 

along with drainage system maintenance and improving flood risk mapping. The adaptive 

measures considered in the study such as LID, the tidal wall with stormwater inlets, and dredging 

are examples of such recommended flood management practices.  

 

With respect to decision analyses, weighting criteria can be a useful approach toward 

choosing a beneficial plan of action.  Both tables (Table 11 and Table 12) showcase the non-

weighted criteria values and weighted criteria values for 5 criteria including: initial recovery 

time, final recovery time, capital investment effort, areal-average risk, and areal-average 

exposure. The initial and final recovery times have been previously defined as related to the 

resilience metric.  The capital investment effort is the capital investment required to implement 

the proposed adaptive measure and is assigned a value from 0 to 3, with 0 indicating no capital 

investment and 3 indicating large capital investment.  The areal-average risk and areal-average 

exposure are the areal means of the risk value and exposure or inundation depth, respectively, 

over the entire area of concern.  Figure 15 provides a visual representation of Table 12 for 

decision makers. 

 

Table 11. Non-Weighted Decision Criteria 

 Decision Criterion 

Scenario Initial 

Recovery 

Time 

(hrs) 

Final 

Recovery 

Time 

(hrs) 

Capital 

Investment 

Effort 

Areal-

Average 

Risk 

Value 

Areal-

Average 

Exposure 

(meters) 

No 

Action 
14 120 0 0.05 0.697 

LID 

Only 
14 120 1 0.05 0.697 

Dredging 

Only 
13 99 2 0.0456 0.662 

Wall 

Only 
13 28 2 0.0369 0.528 
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LID & 

Dredging 
13 99 3 0.0456 0.661 

LID & 

Wall 
13 28 3 0.0369 0.527 

Dredging 

& Wall 
12 25 3 0.0342 0.483 

LID, 

Dredging 

& Wall 

12 25 3 0.0341 0.481 

 

 

Table 10. Weighted Decision Criteria 

 Decision Criterion 

Scenario Initial 

Recovery 

Time 

Final 

Recovery 

Time 

Capital 

Investment 

Effort 

Areal-

Average 

Risk 

Value 

Areal-

Average 

Exposure  

No 

Action 
1.000 1.000 0.000 1.000 1.000 

LID 

Only 
1.000 1.000 0.333 1.000 1.000 

Dredging 

Only 
0.929 0.825 0.667 0.912 0.950 

Wall 

Only 
0.929 0.233 0.667 0.738 0.758 

LID & 

Dredging 
0.929 0.825 1.000 0.912 0.948 

LID & 

Wall 
0.929 0.233 1.000 0.738 0.756 

Dredging 

& Wall 
0.857 0.208 1.000 0.684 0.693 
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LID, 

Dredging 

& Wall 

0.857 0.208 1.000 0.682 0.690 

 

 

Fig. 15: Radar plot of weighted criteria for no action and 7 adaptive measures 

 

As evidenced by the information in Table 12 and Figure 15, either the alternative with 

dredging and the tidal wall or the alternative with LID, dredging and the tidal wall should be 

chosen as the most beneficial plan of action for decision makers. Both adaptive measures provide 

the lowest areal-average risk, the lowest areal-average exposure and minimal initial and final 

recovery time, although capital investment costs would be higher.  
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CONCLUSION  

Assessing flood risk for decision making requires identifying components of risk and 

quantifying these components by an integrative approach. Components associated with risk 

include hazard, vulnerability, exposure, and resilience in the form of adaptive capacity.  

Vulnerability, exposure, and resilience are dependent on the hazard(s) considered, while 

vulnerability is dependent on adaptive capacity, which is tied to resilience. Hence, risk can vary 

primarily due to hazard(s) considered and the associated level of resilience for such hazard(s). 

Specifically, for infrastructure, resilience is tied to the level of recovery given the hazard(s) 

considered, which could be interdependent. This has implications for decision makers such as 

municipalities, who may rely on risk being fixed and do not consider interdependent hazards, 

adaptive measures, and resilience (as a function of adaptive measures and hazards). As such this 

study addresses approaches in considering resilience in overall flood risk management analysis 

and determines if coupling flood risk and engineering resilience, via adaptive measures, could 

improve flood impact assessment. As a result, this study notes this approach has implications for 

decisions makers such as municipalities and their constituents on a policy level when considering 

existing flood insurance mapping methodologies.  

Incorporating resilience within risk framework, as it pertains to drainage infrastructure 

systems, is inherently important for such systems to reduce flood risk. Particularly for engineered 

drainage infrastructure systems with adaptive capacity such as LID and flood proofing structure, 

risk is typically considered for a low probable, damaging event for design purposes.  In this 

study, risk is no longer fixed for an entire area but varies spatially, which could vary with 

hazards considered and adaptive measures adopted.  With this advancement, resilience becomes 

an important factor for determining the performance of drainage infrastructure and flood 

protection during a major flood event.  The resilience term was determined from observing time 

of water receding (i.e., time of recovery via the system).  The time between the initial and final 

(full) water receding from an area of concern is a useful parameter for determining resilience of 

drainage infrastructure systems toward flooding. The shorter the time period for water to fully 

recede during flooding, the more resilient the system and vice-versa.  This study indicates that 

either the alternative with dredging and the tidal wall or the alternative with LID, dredging, and 
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the tidal wall should be chosen as the most beneficial plan of action for the community 

considered. Enacting a system for which flood waters can recede within a shorter time frame can 

reduce exposure and subsequently reduce damage and overall risk to flooding.  Our case study 

has fully confirmed this suite of new concepts within the context of a coupled risk and resilience 

framework.  Future work may be extended to tackle different types of flooding events for inland 

cities as well.  

 Nevertheless, key limitations of this study include the relation of vulnerability to 

resilience within the risk formulation. For the purposes of this study, the vulnerability metric 

does not change with space and time, however implementation of adaptive measures (see Table 

8) represents a link between vulnerability and resilience. Allowing changes to the vulnerability 

metric in space and time, dynamically, was not a motivation of this study and was instead 

accounted for by incorporation of the adaptive measures, which can be used to offset existing 

vulnerability and provide a path toward resilience.  
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APPENDIX 

Appendix A: Curve Fitting & Goodness of Fit Test 

Table A.1: Marginal Distribution for Each Variable (For Target Year 2012) 

Variable Fitted Distribution Parameter(s) 

[location, scale, shape] 

Tidal Stage Generalized Extreme 

Value 

[0.1836,0.1209,0.4494] 

Rainfall Generalized Extreme 

Value 

[2.766,6.261e-

04,2.190e-04] 

Wind Speed Generalized Extreme 

Value 

[-0.1232,2.204,6.932] 

Wave Height Generalized Extreme 

Value 

[0.2545,0.1488,0.2576] 

 

Table A.2: Goodness of Fit Tests (For Target Year 2012) 

Variable 
# of Data 

points 

Null 

Hypothesis 

p-value 
Chi-Squared K-S 

Tidal Stage 366 Data are 

consistent with 

proposed 

statistical 

distribution in 

Table 7 

0.05 Rejects null 

hypothesis 

Does not reject 

null hypothesis 

at 5% 

significance 

level 

Rainfall 366 Data are 

consistent with 

proposed 

statistical 

distribution in 

Table 7 

0.05 Does not 

reject null 

hypothesis at 

5% 

significance 

level 

Rejects null 

hypothesis 

Wind Speed 366 Data are 0.05 Rejects null Rejects null 
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consistent with 

proposed 

statistical 

distribution in 

Table 7 

hypothesis hypothesis 

Wave Height  366 Data are 

consistent with 

proposed 

statistical 

distribution in 

Table 7 

0.05 Rejects null 

hypothesis 

Does not reject 

null hypothesis 

at 5% 

significance 

level 

 

Appendix B: Copula Analysis (For Target Year 2012) 

Table B.1: Copula Analysis for Hazard Variables 

 Tidal Stage vs. Rainfall Tidal Stage vs. Wind Speed Tidal Stage vs. Wave Height 

Copula 

Family 

Max. Log 

Likelihood 

Value 

Dependence 

Parameter 

(θ) 

AIC 

Max. Log 

Likelihoo

d Value 

Dependence 

Parameter 

(θ) 

AIC 

Max. Log 

Likelihood 

Value 

Dependence 

Parameter 

(θ) 

AIC 

Gumbel 8.55e-14 1.00 72.2 -1.405e-14 1.00 
75.8-

6.28i 
-4.47e-15 1.00 

78.1 - 

6.28i 

Clayton 577.7 0.100 -0.7182 -67.06 0.100 
3.59-

6.28i 

9.67e+02 - 

1.093e+01i 
0.675 

-1.748  

+ 

0.0226

i 

Frank -1.417e+05 0.100 
-11.7 

+6.26i 
-42.22 0.100 

4.51-

6.28i 
142.7 0.100 2.08 

 

 

 

 (a)      (b) 
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(c)      (d) 

 

 

(e)      (f) 

Fig.B.1: (a) Frank  PDF plot of Rainfall and Tidal Stage (3D view) with (b) Rainfall and 

Tidal Stage (top view) for target year 2012 (c) Clayton Wind Speed and Tidal Stage (3D 

view) with (d) Wind Speed and Tidal Stage (top view) for target year 2012 and (e)  Clayton 

PDF plot of Wave Height and Tidal Stage (3D view) with (f) Wave Height and Tidal Stage 

(top view) for target year 2012.  
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